Análisis y procesamiento digital de imágenes de satélite GOES para verificar en tiempo real los modelos de pronósticos de tiempo implementados en el IDEAM

Jaramillo, A & Ruiz, J.F. Grupo de Modelamiento de Tiempo y Clima Subdirección de Meteorología – IDEAM (Proyecto IDEAM-BID-FONADE)

Resumen

La elaboración del pronóstico del estado del tiempo sigue siendo una tarea que requiere de la apreciación humana. Entre las diferentes fuentes de información que debe tener en cuenta un pronosticador en el momento de realizar esta labor, se encuentra la información proveniente de las imágenes satelitales. A partir de la comparación entre las imágenes satelitales y las imágenes generadas por los modelos de pronóstico en un período de tiempo específico se puede establecer cuál modelo ofrece una mejor aproximación sobre este período de tiempo. En este trabajo se propone y se evalúa un método mediante el cual se realiza la comparación objetiva de las imágenes satelitales contra las imágenes satelitales en los canales infrarrojo, vapor y visible, para los intervalos de tiempo que comprenden la madrugada, la mañana y la tarde. En el método propuesto se aplican procesos de manipulación de las imágenes para realizar su alineación; se aplica una umbralización para obtener imágenes binarias y se realiza una comparación pixel a pixel entre las imágenes binarizadas. Para realizar la validación del método propuesto se realiza una comparación de las imágenes de los modelos contra los datos de precipitación en un intervalo de 24 horas para cada día.

Palabras clave: Imágenes satelitales, modelos meteorológicos, predicción del estado del tiempo, mapas de precipitación.

INTRODUCCIÓN

Las imágenes satelitales constituyen una valiosa fuente de información no sólo de datos atmosféricos sino también de datos de la superficie terrestre, como p.ej. vegetación, luminosidad, contaminación, etc. (Liu, 1997; Rau, 2007). En particular, las imágenes obtenidas de los satélites meteorológicos se registran y se presentan en forma secuencial en períodos específicos de tiempo; de aquí que algunas de sus principales aplicaciones corresponden a la medición de variables atmosféricas que evolucionan en el tiempo. Algunos trabajos encontrados en la literatura se dedican p.ej. a la detección, seguimiento y caracterización de nubes (Brad, 2002; Yang, 2004; Zhou, 2001). En otros trabajos se proponen métodos para obtener otro tipo de datos como p.ej. la dirección de flujo y

velocidad de los vientos (Schmetz, 1993), y también la estimación de lluvias en regiones específicas (Griffith, 1978; Lee, 1985; Tsonis, 1988; Turiel, 2005).

Aunque en la actualidad se dispone de diferentes fuentes que permiten obtener información relevante para realizar el pronóstico del estado del tiempo, aún este proceso se realiza principalmente de forma subjetiva por parte de un pronosticador experimentado, es decir, la elaboración del pronóstico del estado del tiempo sigue siendo una tarea que requiere de la apreciación humana (Martín, 2000). Entre las diferentes fuentes de información que debe tener en cuenta un pronosticador en el momento de realizar esta labor, se encuentran las secuencias de imágenes obtenidas por los satélites meteorológicos y las imágenes generadas por los modelos de pronóstico que se tengan disponibles en el momento de realizar el pronóstico. En particular, en el IDEAM se dispone de secuencias de imágenes satelitales en tomadas cada 30 minutos en cinco canales espectrales diferentes, entre los cuales se tienen los canales infrarrojo, vapor y visible. Por otra parte se tienen implementados los modelos de simulación de pronóstico GFS y WRF, que se corren en cuatro horarios diferentes: 00Z, 06Z, 12Z y 18Z; y el modelo MM5, el cual también se corre con datos de asimilación del Sistema Mundial de Telecomunicaciones y se denomina MM5_AS en este artículo.

En este trabajo se asume una relación directa entre concentración de nubes en las imágenes satelitales y la probabilidad de lluvia indicada en la imagen del modelo de pronóstico. Para determinar la similitud entre las imágenes comparadas se aplica un proceso de umbralización, tanto para las imágenes de satélite como para las imágenes generadas por los modelos. A partir de un análisis preliminar realizado visualmente se eligieron umbrales específicos. Para las imágenes satelitales el proceso de umbralización permite establecer las regiones de mayor nubosidad que el umbral elegido, y para las imágenes generadas por los modelos el umbral correspondiente establece las regiones de mayor probabilidad de lluvia por encima del umbral. Ya que la umbralización produce imágenes binarias, es decir, de unos y ceros, la comparación posterior entre las imágenes de satélite y las imágenes. Entonces, la medida final de similitud entre las imágenes viene dada por la cantidad de pixeles coincidentes, esto es, por el conteo de pixeles de intensidad uno en la imagen que resulta del producto de las imágenes binarias comparadas.

El resto de este artículo está organizado como se indica a continuación. En la sección siguiente se hace una descripción detallada de los tipos de imágenes utilizadas en este estudio y del proceso aplicado para llegar a la determinación objetiva del modelo de pronóstico más apropiado. En la tercera sección se presenta una síntesis de los resultados numéricos obtenidos y su correspondiente análisis. Finalmente se presentan las conclusiones generales del trabajo realizado y se indican algunas posibilidades de trabajos futuros que permitirían obtener una mejor aproximación al pronóstico objetivo del estado del tiempo.

MATERIALES Y MÉTODOS

En esta sección se describen las imágenes digitales utilizadas en este estudio; se describen las etapas del proceso aplicado a dichas imágenes para determinar el modelo con el cual se obtiene la mayor aproximación a las imágenes satelitales procesadas por cada período de tiempo evaluado; y finalmente, se describe el proceso de validación que se llevó a cabo usando los mapas de precipitación diaria.

Descripción de las imágenes: Tanto las imágenes satelitales como las imágenes de los modelos de pronóstico fueron descargadas diariamente de las bases de datos del IDEAM (IDEAM, 2013), entre el 13 de Febrero y el 14 de Marzo, y entre el 10 y el 21 de Mayo de 2013.

Imágenes de los modelos: En este estudio se consideraron las imágenes generadas por todos los modelos de pronóstico implementados en el IDEAM: GFS00Z, GFS06Z, GFS12Z, GFS18Z, WRF00Z, WRF06Z, WRF12Z, WRF18Z, MM5 y MM5_AS (Ruiz, 2009), en las jornadas de la madrugada, la mañana y la tarde. El tamaño de las imágenes de los modelos es de 500x500 pixeles, con un formato numérico entero de 8 bits sin signo, formato GIF. La información está codificada en 15 niveles de intensidad, de 0 a 14. Los demás niveles de intensidad de 15 a 255 no se utilizan. Para las imágenes descargadas y visualizadas en pseudocolor, en programa para visualización de imágenes: el nivel 0 corresponde al color negro e indica tiempo seco; el nivel 1 corresponde al color blanco e indica el croquis, la rotulación de ejes y los letreros; y el nivel 14 corresponde al color rojo e indica lluvias muy fuertes. Los demás niveles representan valores intermedios de intensidad de lluvias. Un ejemplo de las imágenes se muestra en la Fig. 1 para dos de los modelos considerados: GFS00Z y MM5. Para una descripción detallada de la interpretación de las imágenes de los modelos se remite al lector a la guía de interpretación de los modelos elaborada por Ruiz (2009).

Figura 1. Imágenes visualizadas en pseudocolor generadas por los modelos: (a) GFS00Z y (b) MM5.

Imágenes satelitales: Se procesaron imágenes satelitales generadas cada 30 minutos, en períodos de 6 horas, lo cual corresponde a un máximo de 12 imágenes por período. El número total de imágenes procesada en cada período depende de la disponibilidad de las imágenes al momento de su descarga de la base de datos (IDEAM, 2013). Se consideran tres períodos: madrugada, de 7:15 a 12:45 UTC; mañana, de 13:15 a 18:45 UTC; y tarde, de 19:15 a 22:15 UTC. En período de la tarde sólo se consideran imágenes en el intervalo de tiempo para el cual se tienen imágenes en el canal visible. Los períodos que se acaban de indicar corresponden a los mismos períodos en los cuales se generan las imágenes de los consolidados de cada 6 horas, de los modelos de simulación de pronóstico mencionados en el párrafo anterior.

Para la jornada de la madrugada sólo se consideran imágenes de los canales infrarrojo y vapor de agua. Para las jornadas de la mañana y la tarde se tienen en cuenta, los canales infrarrojo, vapor de agua y visible. Las imágenes de los canales infrarrojos y vapor de agua tienen un tamaño de 765x1020 pixeles, y las imágenes del canal visible tienen 2240x2260 pixeles. Las imágenes satelitales están codificadas en una escala de grises de 0-255, y se descargan en su formato original GEOTIFF, de la base de datos, pero se almacenan en formato JPG para su posterior procesamiento. En la Fig. 2 se muestran ejemplos de imágenes satelitales para los tres canales considerados.

(a) (b) (c)
Figura 2. Imágenes satelitales en el mismo instante de tiempo, en los canales:
(a) infrarrojo, (b) vapor y (c) visible.

Promediación, alineación y recorte: Teniendo en cuenta que las imágenes de los modelos comprenden períodos de cada 6 horas, para las imágenes satelitales se obtuvieron promedios para los mismos períodos de tiempo. Estas imágenes satelitales promedio son las se procesan para su comparación con las imágenes de los modelos. Con el fin de obtener una correcta alineación con las imágenes de los modelos, se aplicó una trasformación afín sobre las imágenes satelitales (González, 1996). La obtención de la transformación afín se realizó manualmente a partir de imágenes satelitales previamente georeferenciadas disponibles en las bases de datos del IDEAM (IDEAM, 2013). Luego se aplicó un recorte para seleccionar el área de la imagen a comparar. Para esta operación se consideró principalmente el área del mapa que se presenta en las imágenes generadas por los modelos, excluyendo los letreros y las etiquetas de la rejilla que contienen dichas imágenes.

Umbralización: Tanto para las imágenes satelitales como para las imágenes generadas por los modelos se aplicó un proceso de umbralización. Este proceso consiste en convertir la imagen en convertir la imagen dada en escala de grises a una imagen binaria, es decir con imagen codificada en sólo unos y ceros (González, 1996). En la imagen resultante se pueden identificar las regiones para las cuales se tienen valores de intensidad por encima del umbral asignado. En el caso de las imágenes satelitales se identifican regiones de la imagen en las cuales se tiene una densidad de nubes por encima del umbral; y en el caso de las imágenes de los modelos se identifican las regiones con una probabilidad de lluvia por encima del umbral respectivo. El proceso de asignación de umbrales para cada uno de los canales de las imágenes satelitales y para las imágenes generadas por los modelos se realizó manualmente por observación con la asesoría de un experto del IDEAM. Para los modelos se eligió un umbral igual a 3 según la escala descrita anteriormente. Para cada uno de los canales de las imágenes satelitales se tomó un umbral diferente en la escala de intensidades de 0-255 según las correspondencias apreciadas visualmente. Para el canal infrarrojo se tomó un umbral de 120; para el canal de vapor el umbral elegido fue de 170; y para el canal visible se eligió un umbral de 100.

Comparación y elección del mejor modelo: La comparación entre las imágenes generadas por los modelos y las imágenes satelitales binarizadas se efectuó directamente aplicando un producto pixel a pixel entre dichas imágenes. Como parámetro de similitud entre las imágenes se considera la suma de los pixeles con valor uno en la imagen resultante del producto de las imágenes binarizadas, lo cual equivale a la cantidad de pixeles con valor uno coincidentes entre ambas imágenes. A mayor similitud entre las imágenes. El mejor modelo se elige como aquel para el cual se tiene un mayor número de pixeles coincidentes. Ya que este proceso se aplica para los tres canales considerados: infrarrojo, vapor y visible, se tiene obtiene una medida de similitud para cada canal. Además, se establece una medida de similitud global mediante la suma de los resultados para los canales considerados según el período de tiempo que se esté evaluando.

En la Figs. 3 a 6 se muestra imágenes de las etapas de procesamiento descritas en las secciones anteriores. La Fig. 3 representa una imagen satelital promedio para el canal visible para un período de tiempo específico, a la cual se ha aplicado una trasformación afín y un recorte. En la Fig. 4 se muestra la imagen promedio binarizada para el umbral elegido. En la Fig. 5 se muestra la imagen binarizada del modelo GFS0Z. Finalmente, en la Fig. 6 se muestra la imagen que resulta al realizar el producto entre las imágenes binarizadas anteriores.

Figura 3. Imagen satelital promedio.

Figura 4. Satelital binarizada.

Figura 5. Modelo GFS06Z binarizado.

Figura 6. Comparación.

Validación: Para realizar la validación del método propuesto de elección del mejor modelo de pronóstico se utilizaron las imágenes de los mapas de precipitación diaria. En estas imágenes se indica la cantidad de lluvia medida en el territorio nacional en períodos de 24 horas de 7:00 AM a 7:00 AM. Esta información está codificada en una escala de 8 niveles de gris. Para realizar la binarización de las imágenes de precipitación se eligió un umbral igual al nivel de gris 3. Para la validación, se aplicaron las mismas etapas de procesamiento que se describieron en las secciones anteriores. Sin embargo, en este caso, para los modelos se tomaron las imágenes de los períodos consolidados de 24 horas descargadas de las bases de datos del IDEAM (IDEAM, 2013), y las imágenes satelitales se promediaron en los mismos períodos de tiempo. En la Fig. 7 se muestra una imagen de precipitación, una imagen del consolidado en 24 horas del modelo WRF12Z y la imagen satelital promedio para el mismo período de tiempo.

Figura 7. Imágenes para el mismo período de 24 horas: (a) precipitación diaria, (b) modelo consolidado, (c) promedio canal infrarrojo.

ANÁLISIS Y DISCUSIÓN

Resultados por períodos de 6 horas

Como se mencionó en la sección anterior, para el período de la madrugada sólo se consideran imágenes satelitales en los canales infrarrojo y vapor de agua, para los períodos de la mañana y de la tarde se toman también imágenes satelitales en el canal visible. Se realizaron comparaciones para 42 días, entre el 13 de Febrero y el 14 de Marzo, y entre el 10 y el 21 de Mayo de 2013. Para algunos períodos no se realizaron las comparaciones, debido a que para esos períodos no se descargaron las imágenes satelitales correspondientes. En total se realizaron 331 comparaciones para los intervalos de 6 horas.

En la Tabla 1 se presenta la frecuencia con la cual cada modelo resulta ser el más aproximado al promedio de las imágenes satelitales en cada uno de los períodos, madrugada, mañana y tarde, de acuerdo al procedimiento de comparación propuesto. En la columna derecha se presenta la suma de frecuencias para cada modelo. De acuerdo a estos resultados, el modelo que aparece más frecuentemente es el MM5_AS (98 veces), seguido del WRF12 (75 veces) y el GRF06Z (49 veces). Para los modelos WRF00Z y WRF06Z no se registran coincidencias. En la Fig. 7 se muestra el comportamiento de frecuencia de los modelos con los datos totales que se presentan en la Tabla 1.

	Madrug	ada	Mañana						
Modelo	Infrarrojo	Vapor	Infrarrojo	Vapor	Visible	Infrarrojo	Vapor	Visible	Totales
GFS00Z	3	4	3	2	3	4	3	5	27
GFS06Z	8	9	1	2	2	7	9	11	49
GFS12Z	1	1	0	0	1	5	4	6	18
GFS18Z	1	1	1	2	1	2	3	6	17
WRF00Z	0	0	0	0	0	0	0	0	0
WRF06Z	0	0	0	0	0	0	0	0	0
WRF12Z	1	3	15	15	10	11	11	9	75
WRF18Z	3	4	8	6	11	3	3	1	39
MM5	0	0	1	2	2	2	1	0	8
MM5_AS	24	19	13	13	12	7	7	3	98
Comparaciones	41	41	42	42	42	41	41	41	331

Tabla 1. Frecuencia con la cual cada modelo resulta ser el más aproximado.

Figura 7. Total de frecuencia para cada modelo.

La Tabla 2 muestra los resultados de la comparación de las imágenes de los consolidados de los modelos de pronóstico en 24 horas contra los mapas de precipitación diaria y los promedios de imágenes satelitales de infrarrojo y vapor, para los mismos períodos de tiempo. Estos resultados indican el número de veces que la imagen generada por el modelo de pronóstico consolidado se aproxima mejor al mapa de precipitación diario y a los promedios de las imágenes satelitales en los canales infrarrojo y vapor de agua, en los períodos de 24 horas. Según estos resultados, los modelos que más frecuentemente coinciden con el mapa de precipitación son el GFS06Z y el GFS12Z (13 veces); para el canal infrarrojo la mayor frecuencia se tienen en los canales GFS18Z y WRF12Z (9 veces); y para el canal vapor de agua la mayor frecuencia también ocurre para los modelos GFS18Z y WRF12Z (10 veces).

Modelo	PrecDia	Infrarrojo	Vapor
GFS00Z	1	3	2
GFS06Z	13	7	6
GFS12Z	13	6	5
GFS18Z	3	9	10
WRF00Z	1	4	2
WRF06Z	0	0	0
WRF12Z	1	9	10
WRF18Z	4	0	2
MM5	0	2	3
MM5_AS	6	2	2
Comparaciones	42	42	42

Tabla 2. Frecuencias en 24 horas.

Figura 8. Frecuencia de los modelos consolidados en 24 horas contra precipitación diaria, infrarrojo y vapor en 24 horas.

En la Figs. 9, 10 y 11 se muestran las series de tiempo para cada modelo que resultan de las comparaciones para los períodos de 24 horas. Cada gráfica indica el número de pixeles coincidentes de las imágenes binarizadas por cada día. En la Fig. 9 se muestran las series de tiempo para la comparación entre el modelo consolidado y el mapa de precipitación diaria. En las Figs. 10 y 11 se muestran las series que resultan de las comparaciones entre el modelo consolidado de 24 horas y los canales infrarrojo y vapor de agua. En estas gráficas se aprecia una tendencia general que siguen todos los modelos considerados para cada conjunto de series de tiempo, despreciando los picos que van a cero en las curvas. Dichos picos representan días en los cuales no se realizó la comparación porque no se descargó la imagen del modelo correspondiente.

Finalmente, en la Fig. 12 se muestran las series de tiempo que se obtienen al promediar los datos obtenidos de los 10 modelos considerados para cada día. En esta gráfica se observa que, mientras que las curvas que se generan de la comparación entre el modelo consolidado de 24 horas contra los canales infrarrojo y vapor presentan un comportamiento semejante, la curva que resulta de la comparación del modelo consolidado de 24 horas contra el mapa de precipitación tiene un comportamiento diferente. Esto último significa que el método de selección del mejor modelo a partir de las imágenes satelitales, aplicado a los períodos de 24 horas en los cuales se realiza la validación, no genera la mejor aproximación a los mapas de precipitación para los mismos períodos de tiempo.

Figura 9. Modelo consolidado 24h comparado con mapa de precipitación diario.

Figura 10. Modelo consolidado 24h comparado con canal infrarrojo promedio 24h.

Figura 11. Modelo consolidado 24h comparado con canal vapor promedio 24h.

Figura 12. Promedio de los 10 modelos comparados con precipitación diaria y canales infrarrojo y vapor de agua.

CONCLUSIONES

En este trabajo se presenta un método mediante el cual se elige un modelo de simulación pronóstico, a partir de la comparación entre las imágenes generadas por los modelos

considerados y las imágenes satelitales que corresponden a los mismos períodos de tiempo para los cuales se realizan las simulaciones.

Aunque los umbrales elegidos para realizar la binarización de las imágenes comparadas se establecieron manualmente, el algoritmo desarrollado permite realizar las comparaciones y la elección del mejor modelo para un período de tiempo específico de manera automática.

En el proceso de validación realizado para los períodos de 24 horas se encontró una baja similitud entre los resultados de las comparaciones entre las imágenes de los modelos y los mapas de precipitación y los resultados que se obtienen de la comparación entre las imágenes de los modelos y las imágenes satelitales para los canales infrarrojo y vapor de agua.

Como trabajo futuro se hace necesario realizar un estudio de las secuencias de imágenes satelitales en los diferentes canales espectrales que permita establecer parámetros para determinar las regiones de mayor precipitación a partir de dichas imágenes. Una vez determinados dichos parámetros se podría hacer una mejor elección del modelo de simulación para realizar el pronóstico del estado del tiempo para cada jornada.

REFERENCIAS BIBLIOGRÁFICAS

Brad, R. y Letia, I. 2002: Extracting cloud motion from satellite image sequences. *Seventh International Conference on Control, Automation, Robotics and Vision* (ICARCV'02), 1303-0307, Singapore.

Gonzalez, R. y Woods, R. 1996: Tratamiento digital de imágenes. Addison Wesley - Diaz de Santos.

Griffith, C., Woodley, W. y Grube, P. 1978: Rain estimation from geosynchronous satellite imagery - sisible and infrarred studies. *Monthly Weather Review*, 106 1153-1171.

IDEAM 2013: http://bart.ideam.gov.co/

Lee, B., Chin, R. y Martin. D. 1985: Automated Rain-Rate Classification of Satellite Images Using Statistical Pattern Recognition. *IEEE Transactions on Geoscience and Remote Sensing*, 23 (3) 315-324.

Liu, A., Peng, C. y Chang, S. 1997 : Wavelet analysis of satellite images for coastal watch. *IEEE Journal of Oceanic Engineering*, 22 (1) 9-17.

Martín, F. 2000: Utilización subjetiva de las imágenes de satélites meteorológicos en las labores de predicción: Identificación de nubes. *Tethys*, 1.

Rau, J., Chen, L., Liu, J. y Wu, T. 2007 : Dynamics monitoring and disaster assessment for watershed management using time-series satellite images, *IEEE Transactions on Geoscience and Remote Sensing*, 45 (6) 1641-1649.

Ruíz, J. F. 2009: Cómo interpretar los modelos de pronóstico del estado del tiempo. http://bart.ideam.gov.co/wrfideam /GUIA_MODELOS.pdf

Schmetz, J. y Holmlund, K. 1993: Operational cloud-motion winds from Meteosat infrarred images. *Journal of Applied Meteorology*, 32 1206-1225.

Tsonis, A. 1988: Single thresholding and rain area delineation from satellite imagery. *Journal of Applied Meteorology*, 27 1302-1306.

Turiel, A., Grazzini, J. y Yahia, H. 2005: Multiscale techniques for the detection of precipitation using thermal IR satellite images. *IEEE Letters on Geosciences and Remote Sensing*, 2 (4) 1-4.

Yang,Y., Lin, H., Guo, Z., Fang, Z. y Jiang, J. 2004: Automatic tracking and characterization of multiple moving clouds in satellite images. *IEEE International Conference on Systems, Man and Cybernetics*, 4, 3088-3093.

Zhou, L., Kambhamettu, C., Goldgof, D., Palaniappan, K. y Hasler, A. 2001: Tracking nonrigid motion and structure from 2D satellite cloud images without correspondences. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23 (11) 1330-1336.

ANEXO

Tabla A1. Mejor modelo para los intervalos de madrugada, mañana y tarde, para los días del 13 de Febrero al 14 de Marzo y del 10 al 21 de Mayo de 2013.

	Madru	ıgada	Mañana			Tarde			
Fecha	Infrarrojo	Vapor	Infrarrojo	Vapor	Visible	Infrarrojo	Vapor	Visible	
20130213	MM5_AS	GFS06Z	WRF12Z	WRF12Z	WRF12Z	WRF12Z	WRF12Z	WRF12Z	
20130214	MM5_AS	MM5_AS	WRF12Z	WRF12Z	WRF12Z	WRF12Z	WRF12Z	GFS12Z	
20130215	MM5_AS	MM5_AS	WRF12Z	MM5	MM5_AS	GFS06Z	GFS06Z	MM5_AS	
20130216	GFS06Z	GFS00Z	GFS00Z	GFS00Z	MM5	WRF18Z	WRF18Z	GFS06Z	
20130217	GFS00Z	WRF12Z	GFS00Z	GFS00Z	GFS00Z	MM5	GFS00Z	WRF12Z	
20130218	MM5_AS	MM5_AS	MM5_AS	MM5_AS	MM5_AS	GFS12Z	GFS12Z	GFS12Z	
20130219	GFS06Z	GFS06Z	WRF12Z	WRF12Z	WRF12Z	GFS06Z	GFS06Z	GFS06Z	
20130220	MM5_AS	MM5_AS	WRF18Z	WRF18Z	WRF18Z	MM5_AS	MM5_AS	GFS06Z	
20130221	MM5_AS	MM5_AS	MM5	MM5	MM5	GFS00Z	GFS00Z	GFS18Z	
20130222	MM5_AS	MM5_AS	GFS00Z	GFS06Z	GFS18Z	MM5	MM5	GFS18Z	
20130223	MM5_AS	MM5_AS	WRF12Z	WRF12Z	MM5_AS	GFS18Z	GFS18Z	GFS18Z	
20130224	GFS00Z	GFS00Z	MM5_AS	MM5_AS	MM5_AS	WRF18Z	WRF18Z	GFS00Z	
20130225	WRF18Z	GFS00Z	WRF12Z	WRF12Z	WRF12Z	GFS18Z	GFS18Z	GFS18Z	
20130226	MM5_AS	MM5_AS	MM5_AS	MM5_AS	WRF12Z	GFS06Z	GFS06Z	GFS06Z	
20130227	MM5_AS	MM5_AS	WRF12Z	WRF12Z	WRF12Z	WRF12Z	WRF12Z	GFS06Z	
20130228	WRF18Z	WRF18Z	WRF18Z	WRF18Z	WRF18Z	MM5_AS	MM5_AS	GFS06Z	
20130301	MM5_AS	GFS06Z	WRF18Z	GFS18Z	MM5_AS	MM5_AS	MM5_AS	MM5_AS	
20130302	GFS06Z	GFS06Z	WRF12Z	WRF18Z	WRF18Z	WRF12Z	WRF12Z	WRF12Z	
20130303	MM5_AS	MM5_AS	WRF12Z	WRF12Z	WRF12Z	WRF12Z	WRF12Z	WRF12Z	
20130304	MM5_AS	MM5_AS	WRF12Z	WRF12Z	MM5_AS	GFS12Z	GFS12Z	GFS18Z	
20130305	GFS06Z	GFS06Z	WRF18Z	WRF18Z	WRF18Z	GFS00Z	GFS18Z	GFS00Z	
20130306	MM5_AS	MM5_AS	GFS18Z	GFS18Z	WRF18Z	MM5_AS	MM5_AS	WRF12Z	
20130307	GFS18Z	GFS18Z	MM5_AS	MM5_AS	WRF18Z	MM5_AS	MM5_AS	MM5_AS	
20130308	MM5_AS	MM5_AS	MM5_AS	MM5_AS	MM5_AS	MM5_AS	MM5_AS	GFS06Z	
20130309	MM5_AS	MM5_AS	WRF18Z	WRF18Z	WRF18Z	WRF12Z	WRF12Z	GFS12Z	
20130310	MM5_AS	MM5_AS	MM5_AS	MM5_AS	WRF12Z	WRF12Z	WRF12Z	GFS06Z	
20130311	MM5_AS	MM5_AS	MM5_AS	MM5_AS	WRF18Z	-	-	-	
20130312	MM5_AS	MM5_AS	WRF18Z	WRF12Z	WRF18Z	WRF12Z	WRF12Z	WRF12Z	
20130313	MM5_AS	MM5_AS	MM5_AS	MM5_AS	MM5_AS	GFS06Z	GFS06Z	GFS06Z	
20130314	-	-	MM5_AS	MM5_AS	MM5_AS	WRF18Z	WRF18Z	WRF18Z	
20130510	GFS00Z	GFS00Z	WRF18Z	WRF18Z	WRF18Z	GFS00Z	GFS00Z	GFS00Z	
20130511	WRF12Z	WRF18Z	MM5_AS	WRF12Z	MM5_AS	WRF12Z	WRF12Z	WRF12Z	
20130512	MM5_AS	WRF12Z	WRF12Z	WRF12Z	MM5_AS	WRF12Z	WRF12Z	WRF12Z	
20130513	GFS12Z	GFS12Z	WRF18Z	MM5_AS	WRF18Z	WRF12Z	WRF12Z	GFS00Z	
20130514	MM5_AS	WRF18Z	MM5_AS	MM5_AS	GFS06Z	GFS06Z	GFS06Z	GFS12Z	
20130515	GFS06Z	GFS06Z	GFS06Z	GFS06Z	GFS06Z	GFS06Z	GFS06Z	GFS06Z	
20130516	MM5_AS	MM5_AS	MM5_AS	MM5_AS	MM5_AS	GFS12Z	GFS06Z	GFS12Z	
20130517	GFS06Z	GFS06Z	MM5_AS	MM5_AS	GFS00Z	GFS12Z	GFS12Z	GFS18Z	
20130518	MM5_AS	WRF12Z	WRF12Z	WRF12Z	WRF12Z	MM5_AS	MM5_AS	WRF12Z	
20130519	WRF18Z	WRF18Z	WRF12Z	WRF12Z	WRF12Z	GFS00Z	GFS06Z	GFS00Z	
20130520	GFS06Z	GFS06Z	WRF12Z	WRF12Z	GFS00Z	GFS06Z	GFS06Z	GFS06Z	
20130521	GFS06Z	GFS06Z	WRF12Z	WRF12Z	GFS12Z	GFS12Z	GFS12Z	GFS12Z	

Tabla A2. Mejor modelo para los consolidados de 24 horas contra el mapa de precipitación diaria y los promedios de satélite infrarrojo y vapor en 24 horas, para los días del 13 de Febrero al 14 de Marzo y del 10 al 21 de Mayo de 2013.

	Precipitación	Satélit	lite 24h		
Fecha	Diaria	Infrarrojo	Vapor		
20130213	GFS06Z	MM5	MM5		
20130214	GFS06Z	GFS18Z	GFS18Z		
20130215	GFS12Z	GFS12Z	GFS12Z		
20130216	GFS12Z	GFS00Z	GFS18Z		
20130217	GFS12Z	GFS00Z	GFS18Z		
20130218	WRF12Z	WRF12Z	WRF18Z		
20130219	GFS18Z	WRF00Z	WRF00Z		
20130220	GFS12Z	MM5_AS	WRF12Z		
20130221	GFS06Z	WRF12Z	WRF12Z		
20130222	GFS06Z	GFS06Z	GFS18Z		
20130223	MM5_AS	WRF00Z	WRF12Z		
20130224	GFS18Z	GFS12Z	GFS12Z		
20130225	GFS06Z	WRF12Z	WRF18Z		
20130226	GFS06Z	GFS12Z	GFS12Z		
20130227	GFS06Z	GFS18Z	GFS18Z		
20130228	WRF18Z	WRF00Z	WRF00Z		
20130301	GFS12Z	GFS18Z	GFS18Z		
20130302	GFS12Z	GFS00Z	GFS00Z		
20130303	GFS12Z	GFS12Z	GFS00Z		
20130304	MM5_AS	GFS06Z	GFS06Z		
20130305	WRF18Z	GFS18Z	GFS18Z		
20130306	GFS12Z	GFS18Z	GFS18Z		
20130307	MM5_AS	GFS18Z	GFS18Z		
20130308	MM5_AS	MM5_AS	MM5_AS		
20130309	GFS18Z	GFS06Z	GFS06Z		
20130310	GFS06Z	MM5	MM5		
20130311	GFS06Z	GFS06Z	GFS06Z		
20130312	WRF00Z	GFS18Z	GFS12Z		
20130313	GFS06Z	GFS18Z	GFS18Z		
20130314	GFS06Z	WRF12Z	MM5		
20130510	WRF18Z	GFS06Z	GFS06Z		
20130511	MM5_AS	GFS18Z	MM5_AS		
20130512	MM5_AS	WRF12Z	WRF12Z		
20130513	WRF18Z	GFS06Z	GFS06Z		
20130514	GFS12Z	WRF12Z	WRF12Z		
20130515	GFS12Z	WRF12Z	WRF12Z		
20130516	GFS12Z	WRF12Z	WRF12Z		
20130517	GFS06Z	GFS06Z	GFS06Z		
20130518	GFS06Z	WRF12Z	WRF12Z		
20130519	GFS12Z	GFS12Z	GFS12Z		
20130520	GFS12Z	GFS12Z	WRF12Z		
20130521	GFS00Z	WRF00Z	WRF12Z		

Fecha	GFS00Z	GFS06Z	GFS12Z	GFS18Z	WRF00Z	WRF06Z	WRF12Z	WRF18Z	MM5	MM5_AS
20130213	6846	7547	5586	6219	3786	5593	4238	4078	4833	6661
20130214	5019	5547	5491	4268	2561	3762	3058	1747	3124	3609
20130215	4081	4096	4726	4709	4392	3277	3363	3027	1800	2780
20130216	9272	9390	11555	11189	5772	6374	4585	9355	4686	4290
20130217	7750	7887	8578	8091	3614	2915	2915	6452	4795	5916
20130218	33342	30522	34115	34893	27545	25240	17150	34999	29018	32254
20130219	8744	9620	10244	10317	7339	7686	5478	6634	5924	6355
20130220	9012	9166	9589	9576	7180	7390	3476	5402	7473	8073
20130221	15859	17155	15814	15603	10673	10434	8917	13556	13588	11014
20130222	16273	16673	15766	16400	11034	13484	7498	10912	12834	13553
20130223	6968	7304	6720	7199	4402	5559	3815	6424	6286	8178
20130224	8941	9156	6349	9926	3980	5378	2916	5552	7940	8998
20130225	6586	6889	6889	6646	5629	4441	4441	5559	5138	0
20130226	8222	9017	8874	8906	8633	7826	5561	6840	5280	7015
20130227	10977	12221	11505	11463	10659	10730	10127	10341	7856	11302
20130228	0	0	0	0	9869	9580	7733	8694	7546	8815
20130301	9817	9524	13267	11325	10854	11818	7614	13111	9712	12806
20130302	11072	12106	12563	12156	11297	11831	8089	10851	9076	10013
20130303	13712	13357	14054	13897	13221	12008	9684	12894	9203	11499
20130304	12402	11150	12693	12097	8637	11525	6870	11522	10800	13705
20130305	5667	6684	6738	6591	6956	5612	5504	5801	4509	5619
20130306	9492	10200	11046	9928	9419	9019	5845	9804	8001	10850
20130307	8606	9472	9252	9516	9407	10737	4795	9362	7643	11380
20130308	10002	8863	10069	10621	8246	8177	4606	9586	7566	11498
20130309	11120	12010	10850	12117	9681	9545	6016	9565	9962	8869
20130310	11169	12185	11144	12014	10814	10025	2911	11233	11669	10001
20130311	8715	9999	9664	9439	9358	9743	6781	8491	6600	8244
20130312	10944	11947	12256	11510	11178	12532	7787	11736	11246	12198
20130313	12699	12841	12247	12511	10582	12462	8863	9925	11402	12360
20130314	14063	14472	13874	14019	9605	13412	6856	9845	10481	11672
20130510	10990	12268	0	0	12609	11222	0	0	10509	0
20130511	7414	8700	8375	7999	6941	6349	4554	5723	6766	10048
20130512	6947	7024	7334	7943	7265	5201	4864	5898	5538	9253
20130513	7225	8318	7758	7905	8500	7391	7971	5789	0	7886
20130514	6701	7545	8118	7968	7617	6636	7692	7984	4039	7736
20130515	10843	10436	11329	11172	10834	10397	9480	9683	6901	8064
20130516	7281	7871	8290	7806	6781	6329	5756	7825	0	7799
20130517	5561	5628	5094	5511	5064	3470	3877	4529	3673	4312
20130518	9959	10657	9356	10526	10340	8773	8895	9268	8249	8394
20130519	9567	10480	11163	10686	10456	9623	10005	9893	5596	6685
20130520	5411	5561	6301	5561	5793	5734	5110	5505	3885	4683
20130521	7477	6986	6489	6933	5774	6674	5324	7118	7074	6899

Tabla A3. Series de tiempo: modelo consolidado 24h contra mapa de precipitación diario.

Fecha	GFS00Z	GFS06Z	GFS12Z	GFS18Z	WRF00Z	WRF06Z	WRF12Z	WRF18Z	MM5	MM5_AS
20130213	6896	7229	7899	7110	6607	7349	3670	8837	9212	7907
20130214	4633	4528	4758	5673	4449	5087	2232	4683	3858	4636
20130215	2244	2553	2579	2426	1699	1782	1886	2349	2102	1088
20130216	1328	1269	985	1179	988	1001	638	981	888	640
20130217	2605	2429	1811	2556	2012	0	629	2477	2046	1923
20130218	815	850	766	1002	1002	520	744	1007	876	851
20130219	3699	4035	3537	3674	3068	4485	3546	4116	4057	3808
20130220	2318	2132	2420	2012	1577	1784	1510	2239	2202	2588
20130221	6782	7428	7225	7119	6408	7365	6664	7960	6479	
20130222	6856	8764	8018	8558	6515	8434	5305	7507	7893	7402
20130223	8941	8091	9382	6885	8344	10038	5080	9958	8920	8637
20130224	1360	1508	1710	1566	996	785	947	1167	727	1393
20130225	1643	1753	0	1753	1985	1291	0	2119	1445	0
20130226	10603	10746	11264	10243	10490	10845	7919	10527	8817	10151
20130227	14127	15301	14486	15403	14046	15143	14257	13345	13637	12667
20130228	0	0	0	0	11934	14938	12794	12104	13975	11656
20130301	15937	14197	15528	16395	11721	14936	9635	13003	13516	10674
20130302	26446	25392	24919	24575	22858	23846	17112	20361	18281	17846
20130303	30209	29385	30579	30521	28755	28363	23136	28844	27603	26423
20130304	5889	6767	5180	5945	3096	4795	1576	5299	5144	5610
20130305	13806	14183	15171	15213	12727	14266	9404	14550	12490	11378
20130306	12061	12576	12810	12979	7127	9860	5964	10867	9616	11887
20130307	8085	7753	7910	8447	6669	8001	4078	7457	6941	6625
20130308	1100	1095	1168	1095	865	600	433	1061	757	1351
20130309	433	664	622	522	534	448	480	546	655	605
20130310	4420	3968	4837	4417	3176	4947	1533	4965	5529	4852
20130311	9453	10575	10136	10045	9279	9786	7492	9806	8664	8511
20130312	13812	13856	14674	14877	12764	13820	9244	13870	14824	13180
20130313	14535	14901	15286	15417	11355	12742	9394	12520	13334	13517
20130314	15233	14951	14804	14563	13628	14911	10496	15829	15756	13028
20130510	14595	14642	0	0	13397	12932	0	0	11476	0
20130511	16164	20035	20090	20465	17330	15475	14673	19767	1/665	20318
20130512	14/8/	15896	15651	15263	16326	14152	14529	16519	14147	13855
20130513	26333	2////	24/1/	26229	26755	27408	25859	27332	0	23141
20130514	24848	23086	23149	24275	24577	28574	22363	29639	23686	25214
20130515	26747	28072	29507	29025	28220	30691	27659	32368	25549	26086
20130516	35411	36458	3/83/	39100	35909	3/8/5	31248	40503	0	35500
20130517	9840	10790	10391	10476	8683	10068	8836	10352	8902	9046
20130518	9516	8909	9316	8975	8636	8201	8109	9690	/1/8	/243
20130519	28319	29491	29514	28/11	29180	26335	24065	27835	19371	15/60
20130520	35667	36816	40706	38595	39411	39953	31183	40420	29314	35208
20130521	28246	31671	27957	30943	27613	32998	25889	32497	26756	27241

Tabla A4. Series de tiempo: promedio infrarrojo 24h contra mapa precipitación diario.

Fecha	GFS00Z	GFS06Z	GFS12Z	GFS18Z	WRF00Z	WRF06Z	WRF12Z	WRF18Z	MM5	MM5_AS
20130213	6042	6455	7009	6421	5936	6310	2961	7851	8328	7047
20130214	4824	4499	4785	5579	5268	4815	2704	5138	3642	4717
20130215	1015	1317	1425	1287	1138	1047	1339	1354	1086	419
20130216	296	266	287	317	207	208	150	203	146	141
20130217	1150	1101	748	1183	949	0	158	1178	875	894
20130218	433	475	474	480	480	409	465	471	411	258
20130219	2579	2690	2473	2432	2242	3121	2371	2928	2878	2628
20130220	2104	1984	2108	1687	1525	1954	2027	2548	2095	2335
20130221	6103	6731	6722	6796	6147	6965	6212	7316	6252	6282
20130222	5052	6529	6413	6776	5779	6486	5864	6337	6219	5560
20130223	7089	6486	7438	5483	6392	8041	4176	8198	7192	6757
20130224	1203	1313	1459	1401	830	647	872	875	656	1210
20130225	1273	1545	0	1512	1779	1240	0	1704	1402	0
20130226	11679	11759	12132	11182	11044	11902	8544	11591	9912	11279
20130227	13890	15155	14262	15205	13760	14798	13959	13266	13975	12314
20130228	0	0	0	0	13912	17468	15198	15630	16098	14046
20130301	12032	11034	13028	13256	10167	11870	8183	11052	10499	8431
20130302	29324	28231	27531	27408	24754	26765	18259	23247	20948	20274
20130303	30034	29289	29917	29966	28040	28044	22015	28296	27288	25519
20130304	5504	6582	4715	5804	2519	4112	1674	4805	4642	5275
20130305	16560	17114	17800	18118	14419	16021	10228	16379	14121	13849
20130306	16773	17662	17783	18255	10637	13294	7451	14920	12592	15864
20130307	9671	9580	9556	10238	7048	9089	3926	8358	8404	8350
20130308	1983	1788	2094	2044	1286	1021	738	1953	1649	2173
20130309	892	1234	1168	1080	1065	922	928	1156	1215	1188
20130310	6954	6485	7249	6916	5090	7540	1996	7690	8238	7236
20130311	12372	13713	12951	12749	11959	12350	8589	13174	11394	11086
20130312	1/269	1/418	18463	18163	16004	16944	11621	16958	18368	16557
20130313	16775	1/109	1/401	1///4	13345	15440	11940	14427	15447	14/10
20130314	18028	1/6/1	1/652	17409	16020	1/4/1	11128	18162	18272	15108
20130510	16889	16972	0	0	14929	14627	0	0	13253	0
20130511	14035	17564	17979	18005	16050	14241	13601	17789	15029	18021
20130512	15068	16388	16004	15621	16710	14483	15007	16913	14187	14142
20130513	30645	32482	29357	30880	31281	32311	30421	31982	0	27055
20130514	26560	25545	26016	26506	27193	30640	25239	32277	24740	26709
20130515	30145	30073	33052	33180	30835	34450	29760	30188	28904	28951
20130516	30120	30378	38502	39040	35891	37028	31110	39980	0	32880
20130517	10241	1193	14760	14404	9900 12504	12020	9090	10000	0094	9270
20130510	15141	14000	14/02	14494	10001	12029	12103	10210	24620	20642
20130319	30020 20625	3/119	12000	00000 11017	12000	33013 12651	30307	34009 11076	24020	20012
20130320	30035	40048 24220	43090	4104/	43220	43034	34390	449/0 20150	30034	30111
20130521	30484	34320	30523	32727	30098	30450	29120	38458	21442	21191

Tabla A5. Series de tiempo: promedio vapor 24h contra mapa precipitación diario.